

AME Bandpass-Filter

Motivation and UseCase

- Lumped Element filters are existing in different styles over wide frequency range to fulfill customer requirements
- Standardized Filters are available as COTs parts
- More complex system designs expect special filter behaviour ightarrow no standard requiremen
 - Individual filter designs
 - No COTs part
 - Increase of cost cause of design-, tuning- and optimization effords (sometimes in iterations for system requirement fit)
 - Filter tuning often has to be done manually by tunable capacitors or coil trimming which can be complex and time intensive
 - Negative performance effects cause of component assembly have to be optimized by verification (difficult to simulate)

GOAL: To realize optimized full 3D-printed AME-Filters by simulation without additional manual tuning effords can ease engineers life significant

Lumped Element filter as example

Starting the Filter-Design

© Copyright 2023 J.A.M.E.S GmbH. All rights reserved.

AME-Bandpass-Filter - calculator

- (3dB bandwidth cut off frequency 10 MHz and 12 MHz)
- Starting with a BPF-Butterworth Filter-Design Tool for Lumped Elements

0

0

0

J.A.M.E.S

AME-Bandpass Filter – Simulation

- CST Studio Suite 2022
- Simulation with discrete filter elements (Reference Simulation)
 - CST schematic of bandpass filter design

Capacity	Inductivity
C1 = 53,1 pF	L1 = 3,98 µH
C2 = 3,2 nF	L2 = 66,3 nH

Resulting bandpass filter parameters

O

Realization of **3D-printed** elements for the Bandpass-Filter

© Copyright 2023 J.A.M.E.S GmbH. All rights reserved.

AME-Bandpass Filter – Simulation

2000.00un

• CST Studio Suite 2022

- 2. Design of 3D-printed AME filter elements
 - With needed RF-parameters of dielectric materi
 - Dielectric constant \mathcal{E}_r
 - loss tangens
 - Design parameters AME-filter elements

here:

- AME-capacitor
- AME-coil

Ν

• AME-capacitor Design (plate capacitor)

With Adaptation for VNA measurement

Realization

0

0

0

Design

N= 4; d= 0,1 mm

N= 16; d= 0,035 mm

AME-capacitor Design

Simulation

Design

Measurement

C1 = 62 pF

C2 =12 nF/

• AME-coil Design (air coil)

Design

N= 9; d= 27,4 mm

N= 10; d= 2,17 mm

0

• AME-coil Design

Simulation

Design

Measurement

0

0

L1 = 22,8 µH

L2 = 61,5 nH

AME-Filter

- Combined lumped elements filter assembly
- CST-Simulation check with measured element values

to minimize !

Reference Simulation (optimal)	
Capacity	Inductivity
C1 = 53,1 pF	L1 = 3,98 µH
C2 = 3,2 nF	L2 = 66,3 nH

Simulation with measured Elements		
Capacity	Inductivity	
C1 = 62 pF	L1 = 23 µH	
C2 = 12 nF	L2 = 62 nH	

Resulting bandpass filter parameters With frequency shift of passband 0

0

AME-Bandpass Filter

• Realization done

RESULT

 No verification possible – short due to effects during printing process (sagging, spraying...)

AME-Bandpass Filter

SUMMARY

- J.A.M.E.S showed the potential of fully 3D-printed Filters the first time
- Fields of improvement has been identified
 - Printing process / z-axis conductivity
 - Material characteristic / RFparameter
 - Design & Simulation workflow

➔ Further optimization will be established !

J.A.M.E.S

Be part of the AME Revolution!

www.j-ames.com

FOLLOW US ON

0

0

С

Q

0

J.A.M.E.S GmbH

0

0

0

0

0

JAMES_GmbH

JAMES_Gmb

JAMES_GmbH